
Chapter 4. Using XL builtin floating-point functions for Blue

Gene

The XL C/C++ and XL Fortran compilers include a set of built-in functions that are

optimized for the PowerPC architecture. For a full description of them, refer to the

following documents (available from the Web pages listed at the beginning of this

chapter):

v Built-in functions for POWER™ and PowerPC architectures in XL C/C++ Advanced

Edition for Linux, V9.0 Compiler Reference

v Intrinsic procedures in XL Fortran Advanced Edition for Linux, V11.1 Language

Reference

In addition, on Blue Gene, the XL compilers provide a set of built-in functions that

are specifically optimized for the PowerPC 440 or PowerPC 450 Double Hummer

dual FPU. These built-in functions provide an almost one-to-one correspondence

with the Double Hummer instruction set.

All of the C/C++ and Fortran built-in functions operate on complex data types,

which have an underlying representation of a two-element array, in which the real

part represents the primary element and the imaginary part represents the second

element. The input data you provide does not actually need to represent complex

numbers: in fact, both elements are represented internally as two real values, and

none of the built-in functions actually performs complex arithmetic. A set of

built-in functions especially designed to efficiently manipulate complex-type

variables is also available.

The Blue Gene built-in functions perform the several types of operations as

explained in the following paragraphs.

Parallel operations perform SIMD computations on the primary and secondary

elements of one or more input operands. They store the results in the

corresponding elements of the output. As an example, Figure 8 on page 32

illustrates how a parallel multiply operation is performed.

© Copyright IBM Corp. 2006, 2007 31

Cross operations perform SIMD computations on the opposite primary and

secondary elements of one or more input operands. They store the results in the

corresponding elements in the output. As an example, Figure 9 illustrates how a

cross-multiply operation is performed.

Copy-primary operations perform SIMD computation between the corresponding

primary and secondary elements of two input operands, where the primary

element of the first operand is replicated to the secondary element. As an example,

Figure 10 on page 33 illustrates how a cross-primary multiply operation is

performed.

Figure 8. Parallel operations

Figure 9. Cross operations

32 Using the IBM XL Compilers for Blue Gene

Copy-secondary operations perform SIMD computation between the corresponding

primary and secondary elements of two input operands, where the secondary

element of the first operand is replicated to the primary element. As an example,

Figure 11 illustrates how a cross-secondary multiply operation is performed.

In cross-copy operations, the compiler crosses either the primary or secondary

element of the first operand, so that copy-primary and copy-secondary operations

can be used interchangeably to achieve the same result. The operation is performed

on the total value of the first operand. As an example, Figure 12 on page 34

illustrates the result of a cross-copy multiply operation.

Figure 10. Copy-primary operations

Figure 11. Copy-secondary operations

Chapter 4. Using XL builtin floating-point functions for Blue Gene 33

The following sections describe the available built-in functions by category:

v Complex type manipulation functions

v Load and store functions

v Move functions

v Arithmetic functions

v Select functions

For each function, the C/C++ prototype is provided. In C, you do not need to

include a header file to obtain the prototypes. The compiler includes them

automatically. In C++, you need to include the header file builtins.h.

Fortran does not use prototypes for built-in functions. Therefore, the interfaces for

the Fortran functions are provided in textual form. The function names omit the

double underscore (__) in Fortran.

All of the built-in functions, with the exception of the complex type manipulation

functions, require compilation under -qarch=440d for Blue Gene/L, or -qarch=450d

for Blue Gene/P. This is the default setting for these processors.

To help clarify the English description of each function, the following notation is

used:

element (variable)

where element represents one of primary or secondary , and variable represents input

variable a , b , or c , and the output variable result . For example, consider the

following formula:

primary(result) = primary(a) + primary(b)

The formula indicates that the primary element of input variable a is added to the

primary element of input variable b and stored in the primary element of the

result.

Figure 12. Cross-copy operations

34 Using the IBM XL Compilers for Blue Gene

To optimize your calls to the Blue Gene built-in functions, follow the guidelines

provided in Tuning your code for Blue Gene. Using the alignx built-in function

(described in Checking for data alignment), and specifying the disjoint pragma

(described in Removing possibilities for aliasing (C/C++)), are recommended for

code that calls any of the built-in functions.

Complex type manipulation functions

The functions described in this section are useful for efficiently manipulating

complex data types, by allowing you to automatically convert real floating-point

data to complex types, and to extract the real (primary) and imaginary (secondary)

parts of complex values.

 Table 15. Complex type manipulation functions

 Function Convert dual reals to complex (single-precision): __cmplxf

Purpose Converts two single-precision real values to a single complex value. The

real a is converted to the primary element of the return value, and the real

b is converted to the secondary element of the return value.

Formula primary(result) = a

secondary(result) = b

C/C++

prototype

float _Complex __cmplxf (float a, float b);

Fortran

description

CMPLX(A,B)

where A is of type REAL(4)

where B is of type REAL(4)

result is of type COMPLEX(4)

 Function Convert dual reals to complex (double-precision): __cmplx

Purpose Converts two double-precision real values to a single complex value. The

real a is converted to the primary element of the return value, and the real

b is converted to the secondary element of the return value.

Formula primary(result) = a

secondary(result) = b

C/C++

prototype

double _Complex __cmplx (double a, double b);

long double _Complex __cmplxl (long double a, long double b);1

Fortran

description

CMPLX(A,B)

where A is of type REAL(8)

where B is of type REAL(8)

result is of type COMPLEX(8)

 Function Extract real part of complex (single-precision): __crealf

Purpose Extracts the primary part of a single-precision complex value a , and

returns the result as a single real value.

Formula result = primary(a)

C/C++

prototype

float __crealf (float _Complex a);

Fortran

description

N/A

 Function Extract real part of complex (double-precision): __creal, __creall

Purpose Extracts the primary part of a double-precision complex value a , and

returns the result as a single real value.

Chapter 4. Using XL builtin floating-point functions for Blue Gene 35

Table 15. Complex type manipulation functions (continued)

Formula result = primary(a)

C/C++

prototype

double __creal (double _Complex a);

long double __creall (long double _Complex a);1

Fortran

description

N/A

 Function Extract imaginary part of complex (single-precision): __cimagf

Purpose Extracts the secondary part of a single-precision complex value a , and

returns the result as a single real value.

Formula result = secondary(a)

C/C++

prototype

float __cimagf (float _Complex a);

Fortran

description

N/A

 Function Extract imaginary part of complex (double-precision): __cimag, __cimagl

Purpose Extracts the imaginary part of a double-precision complex value a , and

returns the result as a single real value.

Formula result =secondary(a)

C/C++

prototype

double __cimag (double _Complex a); long double __cimagl (long double

_Complex a);1

Fortran

description

N/A

Notes:

1. 128-bit C/C++ long double types are not supported on Blue Gene/L. Long doubles are

treated as regular double-precision doubles.

Load and store functions

Table 16 lists and explains the various parallel load and store functions that are

available.

 Table 16. Load and store functions

 Function Parallel load (single-precision): __lfps

Purpose Loads parallel single-precision values from the address of a , and converts

the results to double-precision. The first word in address(a) is loaded into

the primary element of the return value. The next word, at location

address(a) +4, is loaded into the secondary element of the return value.

Formula primary(result) = a[0]

secondary(result) = a[1]

C/C++

prototype

double _Complex __lfps (float * a);

Fortran

description

LOADFP(A)

 where A is of type REAL(4) or COMPLEX(4)

result is of type COMPLEX(8)

 Function Cross load (single-precision): __lfxs

36 Using the IBM XL Compilers for Blue Gene

Table 16. Load and store functions (continued)

Purpose Loads single-precision values that have been converted to double-precision,

from the address of a. The first word in address(a) is loaded into the

secondary element of the return value. The next word, at location address(a)

+4, is loaded into the primary element of the return value.

Formula primary(result) = a[1]

secondary(result) = a[0]

C/C++

prototype

double _Complex __lfxs (float * a);

Fortran

description

LOADFX(A)

where A is of type REAL(4) or COMPLEX(4)

result is of type COMPLEX(8)

 Function Parallel load: __lfpd

Purpose Loads in parallel values from the address of a. The first word in address(a)

is loaded into the primary element of the return value. The next word, at

location address(a) +8, is loaded into the secondary element of the return

value.

Formula primary(result) = a[0]

secondary(result) = a[1]

C/C++

prototype

double _Complex __lfpd(double* a);

Fortran

description

LOADFP(A)

where A is of type REAL(8) or COMPLEX(8)

result is of type COMPLEX(8)

 Function Cross load: __lfxd

Purpose Loads values from the address of a. The first word in address(a) is loaded

into the secondary element of the return value. The next word, at location

address(a) +8, is loaded into the primary element of the return value.

Formula primary(result) = a[1]

secondary(result) = a[0]

C/C++

prototype

double _Complex __lfxd (double * a);

Fortran

description

LOADFX(A)

where A is of type REAL(8) or COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel store (single-precision): __stfps

Purpose Stores in parallel double-precision values that have been converted to

single-precision, into address(b). The primary element of a is converted to

single-precision and stored as the first word in address(b). The secondary

element of a is converted to single-precision and stored as the next word at

location address(b) +4.

Formula b[0] = primary(a)

b[1] = secondary(a)

C/C++

prototype

void __stfps (float * b, double _Complex a);

Chapter 4. Using XL builtin floating-point functions for Blue Gene 37

Table 16. Load and store functions (continued)

Fortran

description

STOREFP(B,A)

where B is of type REAL(4) or COMPLEX(4)

where A is of type COMPLEX(8)

result is none

 Function Cross store (single-precision): __stfxs

Purpose Stores double-precision values that have been converted to single-precision,

into address(b). The secondary element of a is converted to single-precision

and stored as the first word in address(b). The primary element of a is

converted to single-precision and stored as the next word at location

address(b) +4.

Formula b[0] = secondary(a)

b[1] = primary(a)

C/C++

prototype

void __stfxs (float * b, double _Complex a);

Fortran

description

STOREFX(B,A)

where B is of type REAL(4) or COMPLEX(4)

where A is of type COMPLEX(8)

result is none

 Function Parallel store: __stfpd

Purpose Stores in parallel values into address(b). The primary element of a is stored

as the first double word in address(b). The secondary element of a is stored

as the next double word at location address(b) +8.

Formula b[0] = primary(a)

b[1] = secondary(a)

C/C++

prototype

void __stfpd (double * b, double _Complex a);

Fortran

description

STOREFP(B,A)

where B is of type REAL(8) or COMPLEX(8)

where A is of type COMPLEX(8)

result is none

 Function Cross store: __stfxd

Purpose Stores values into address(b). The secondary element of a is stored as the

first double word in address(b). The primary element of a is stored as the

next double word at location address(b) +8.

Formula b[0] = secondary(a)

b[1] = primary(a)

C/C++

prototype

void __stfxd (double * b, double _Complex a);

Fortran

description

STOREFX(B,A)

where B is of type REAL(8) or COMPLEX(8)

where A is of type COMPLEX(8)

result is none

 Function Parallel store as integer: __stfpiw

38 Using the IBM XL Compilers for Blue Gene

Table 16. Load and store functions (continued)

Purpose Stores in parallel floating-point double-precision values into b as integer

words. The lower-order 32 bits of the primary element of a are stored as the

first integer word in address(b). The lower-order 32 bits of the secondary

element of a are stored as the next integer word at location address(b) +4.

This function is typically preceded by a call to the __fpctiw or __fpctiwz

built-in functions, described in Unary functions, which perform parallel

conversion of dual floating-point values to integers.

Formula

 b[0] = primary(a)

b[1] = secondary(a)

C/C++

prototype

void __stfpiw (int * b, double _Complex a);

Fortran

description

STOREFP(B,A)

where B is of type INTEGER(4)

where A is of type COMPLEX(8)

result is none

Move functions

 Table 17.

 Function Cross move: __fxmr

Purpose Swaps the values of the primary and secondary elements of operand a.

Formula primary(result) = secondary(a)

secondary(result) = primary(a)

C/C++

prototype

double _Complex __fxmr (double _Complex a);

Fortran

description

FXMR(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

Arithmetic functions

The following sections describe all the arithmetic built-in functions, categorized by

their number of operands:

v Unary functions

v Binary functions

v Multiply-add functions

Unary functions

Unary functions operate on a single input operand. These functions are listed in

Table 18.

 Table 18. Unary functions

 Function Parallel convert to integer: __fpctiw

Chapter 4. Using XL builtin floating-point functions for Blue Gene 39

Table 18. Unary functions (continued)

Purpose Converts in parallel the primary and secondary elements of operand a to

32-bit integers. After a call to this function, use the __stfpiw function to

store the converted integers in parallel, as described in Load and store

functions.

Formula primary(result) = primary(a)

secondary(result) = secondary(a)

C/C++

prototype

double _Complex __fpctiw (double _Complex a);

Fortran

description

FPCTIW(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel convert to integer and round to zero: __fpctiwz

Purpose Converts in parallel the primary and secondary elements of operand a to 32

bit integers and rounds the results to zero. After a call to this function, you

will want to use the __stfpiw function to store the converted integers in

parallel, as described in Load and store functions.

Formula primary(result) = primary(a)

secondary(result) = secondary(a)

C/C++

prototype

double _Complex __fpctiwz(double _Complex a);

Fortran

description

FPCTIWZ(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel round double-precision to single-precision: __fprsp

Purpose Rounds in parallel the primary and secondary elements of double-precision

operand a to single precision.

Formula primary(result) = primary(a)

secondary(result) = secondary(a)

C/C++

prototype

double _Complex __fprsp (double _Complex a);

Fortran

description

FPRSP(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel reciprocal estimate: __fpre

Purpose Calculates in parallel double-precision estimates of the reciprocal of the

primary and secondary elements of operand a.

Formula primary(result) = primary(a)

secondary(result) = secondary(a)

C/C++

prototype

double _Complex __fpre(double _Complex a);

Fortran

description

FPRE(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel reciprocal square root: __fprsqrte

Purpose Calculates in parallel double-precision estimates of the reciprocals of the

square roots of the primary and secondary elements of operand a.

40 Using the IBM XL Compilers for Blue Gene

Table 18. Unary functions (continued)

Formula primary(result) = primary(a)

secondary(result) = secondary(a)

C/C++

prototype

double _Complex __fprsqrte (double _Complex a);

Fortran

description

FPRSQRTE(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel negate: __fpneg

Purpose Calculates in parallel the negative absolute values of the primary and

secondary elements of operand a.

Formula primary(result) = primary(a)

secondary(result) = secondary(a)

C/C++

prototype

double _Complex __fpneg (double _Complex a);

Fortran

description

FPNEG(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel absolute: __fpabs

Purpose Calculates in parallel the absolute values of the primary and secondary

elements of operand a.

Formula primary(result) = primary(a)

secondary(result) = secondary(a)

C/C++

prototype

double _Complex __fpabs (double _Complex a);

Fortran

description

FPABS(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel negate absolute: __fpnabs

Purpose Calculates in parallel the negative absolute values of the primary and

secondary elements of operand a.

Formula primary(result) = primary(a)

secondary(result) = secondary(a)

C/C++

prototype

double _Complex __fpnabs (double _Complex a);

Fortran

description

FPNABS(A)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

Binary functions

Binary functions operate on two input operands. The functions are listed in

Table 19.

 Table 19.

 Function Parallel add: __fpadd

Chapter 4. Using XL builtin floating-point functions for Blue Gene 41

Table 19. (continued)

Purpose Adds in parallel the primary and secondary elements of operands a and b.

Formula primary(result) = primary(a) + primary(b)

secondary(result) = secondary(a) + secondary(b)

C/C++

prototype

double _Complex __fpadd (double _Complex a, double _Complex b);

Fortran

description

FPADD(A,B)

where A is of type COMPLEX(8)

where B is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel subtract: __fpsub

Purpose Subtracts in parallel the primary and secondary elements of operand b from

the corresponding primary and secondary elements of operand a.

Formula primary(result) = primary(a) - primary(b)

secondary(result) = secondary(a) - secondary(b)

C/C++

prototype

double _Complex __fpsub (double _Complex a, double _Complex b);

Fortran

description

FPSUB(A,B)

where A is of type COMPLEX(8)

where B is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel multiply: __fpmul

Purpose Multiples in parallel the values of primary and secondary elements of

operands a and b.

Formula primary(result) = primary(a) × primary(b)

secondary(result) = secondary(a) × secondary(b)

C/C++

prototype

double _Complex __fpmul (double _Complex a, double _Complex b);

Fortran

description

FPMUL(A,B)

where A is of type COMPLEX(8)

where B is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Cross multiply: __fxmul

Purpose The product of the secondary element of a and the primary element of b is

stored as the primary element of the return value. The product of the

primary element of a and the secondary element of b is stored as the

secondary element of the return value.

Formula primary(result) = secondary(a) x primary(b)

secondary(result) = primary(a) × secondary(b)

C/C++

prototype

double _Complex __fxmul (double _Complex a, double _Complex b);

Fortran

description

FXMUL(A,B)

where A is of type COMPLEX(8)

where B is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Cross copy multiply: _fxpmul, __fxsmul

42 Using the IBM XL Compilers for Blue Gene

Table 19. (continued)

Purpose Both of these functions can be used to achieve the same result. The product

of a and the primary element of b is stored as the primary element of the

return value. The product of a and the secondary element of b is stored as

the secondary element of the return value.

Formula primary(result) = a x primary(b)

secondary(result) = a x secondary(b)

C/C++

prototype

double _Complex __fxpmul (double _Complex b, double a);

double _Complex __fxsmul (double _Complex b, double a);

Fortran

description

FXPMUL(B,A) or FXSMUL(B,A)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

Multiply-add functions

Multiply-add functions take three input operands, multiply the first two, and add

or subtract the third.

 Table 20.

 Function Parallel multiply-add: __fpmadd

Purpose The sum of the product of the primary elements of a and b, added to the

primary element of c, is stored as the primary element of the return value.

The sum of the product of the secondary elements of a and b, added to the

secondary element of c, is stored as the secondary element of the return

value.

Formula primary(result) = primary(a) × primary(b) + primary(c)

secondary(result) = secondary(a) × secondary(b) + secondary(c)

C/C++

prototype

double _Complex __fpmadd (double _Complex c, double _Complex b,

double _Complex a);

Fortran

description

FPMADD(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel negative multiply-add: __fpnmadd

Purpose The sum of the product of the primary elements of a and b, added to the

primary element of c, is negated and stored as the primary element of the

return value. The sum of the product of the secondary elements of a and b,

added to the secondary element of c, is negated and stored as the

secondary element of the return value.

Formula primary(result) = -(primary(a) × primary(b) + primary(c))

secondary(result) = -(secondary(a) × secondary(b) + secondary(c))

C/C++

prototype

double _Complex __fpnmadd (double _Complex c, double _Complex b,

double _Complex a);

Fortran

description

FPNMADD(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

Chapter 4. Using XL builtin floating-point functions for Blue Gene 43

Table 20. (continued)

 Function Parallel multiply-subtract: __fpmsub

Purpose The difference of the primary element of c, subtracted from the product of

the primary elements of a and b, is stored as the primary element of the

return value. The difference of the secondary element of c, subtracted from

the product of the secondary elements of a and b, is stored as the secondary

element of the return value.

Formula primary(result) = primary(a) × primary(b) - primary(c)

secondary(result) = secondary(a) × secondary(b) - secondary(c)

C/C++

prototype

double _Complex __fpmsub (double _Complex c, double _Complex b,

double _Complex a);

Fortran

description

FPMSUB(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Parallel negative multiply-subtract: __fpnmsub

Purpose The difference of the primary element of c, subtracted from the product of

the primary elements of a and b, is negated and stored as the primary

element of the return value. The difference of the secondary element of c,

subtracted from the product of the secondary elements of a and b, is

negated and stored as the secondary element of the return value.

Formula primary(result) = -(primary(a) × primary(b) - primary(c))

secondary(result) = -(secondary(a) × secondary(b) - secondary(c))

C/C++

prototype

double _Complex __fpnmsub (double _Complex c, double _Complex b,

double _Complex a);

Fortran

description

FPNMSUB(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Cross multiply-add: __fxmadd

Purpose The sum of the product of the primary element of a and the secondary

element of b, added to the primary element of c, is stored as the primary

element of the return value. The sum of the product of the secondary

element of a and the primary element of b, added to the secondary element

of c, is stored as the secondary element of the return value.

Formula primary(result) = primary(a) × secondary(b) + primary(c)

secondary(result) = secondary(a) × primary(b) + secondary(c)

C/C++

prototype

double _Complex __fxmadd (double _Complex c, double _Complex b,

double _Complex a);

Fortran

description

FXMADD(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Cross negative multiply-add: __fxnmadd

44 Using the IBM XL Compilers for Blue Gene

Table 20. (continued)

Purpose The sum of the product of the primary element of a and the secondary

element of b, added to the primary element of c, is negated and stored as

the primary element of the return value. The sum of the product of the

secondary element of a and the primary element of b, added to the

secondary element of c, is negated and stored as the secondary element of

the return value.

Formula primary(result) = -(primary(a) × secondary(b) + primary(c))

secondary(result) = -(secondary(a) × primary(b) + secondary(c))

C/C++

prototype

double _Complex __fxnmadd (double _Complex c, double _Complex b,

double _Complex a);

Fortran

description

FXNMADD(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Cross multiply-subtract: __fxmsub

Purpose The difference of the primary element of c, subtracted from the product of

the primary element of a and the secondary element of b, is stored as the

primary element of the return value. The difference of the secondary

element of c, subtracted from the product of the secondary element of a and

the primary element of b, is stored as the secondary element of the return

value.

Formula primary(result) = primary(a) × secondary(b) - primary(c)

secondary(result) = secondary(a) × primary(b) - secondary(c)

C/C++

prototype

double _Complex __fxmsub (double _Complex c, double _Complex b,

double _Complex a);

Fortran

description

FXMSUB(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Cross negative multiply-subtract: __fxnmsub

Purpose The difference of the primary element of c, subtracted from the product of

the primary element of a and the secondary element of b, is negated and

stored as the primary element of the return value. The difference of the

secondary element of c, subtracted from the product of the secondary

element of a and the primary element of b, is negated and stored as the

secondary element of the return value.

Formula primary(result) = -(primary(a) × secondary(b) - primary(c))

secondary(result) = -(secondary(a) × primary(b) - secondary(c))

C/C++

prototype

double _Complex __fxnmsub (double _Complex c, double _Complex b,

double _Complex a);

Fortran

description

FXNMSUB(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type COMPLEX(8)

result is of type COMPLEX(8)

 Function Cross copy multiply-add: __fxcpmadd, __fxcsmadd

Chapter 4. Using XL builtin floating-point functions for Blue Gene 45

Table 20. (continued)

Purpose Both of these functions can be used to achieve the same result. The sum of

the product of a and the primary element of b, added to the primary

element of c , is stored as the primary element of the return value. The sum

of the product of a and the secondary element of b, added to the secondary

element of c , is stored as the secondary element of the return value.

Formula primary(result) = a x primary(b) + primary(c)

secondary(result) = a x secondary(b) + secondary(c)

C/C++

prototype

double _Complex __fxcpmadd (double _Complex c, double

_Complex b, double a);

double _Complex __fxcsmadd (double _Complex c, double

_Complex b, double a);

Fortran

description

FXCPMADD(C,B,A) or FXCSMADD(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross copy negative multiply-add: __fxcpnmadd, __fxcsnmadd

Purpose Both of these functions can be used to achieve the same result. The

difference of the primary element of c, subtracted from the product of a and

the primary element of b, is negated and stored as the primary element of

the return value. The difference of the secondary element of c , subtracted

from the product of a and the secondary element of b, is negated stored as

the secondary element of the return value.

Formula primary(result) = -(a x primary(b) + primary(c))

secondary(result) = -(a x secondary(b) + secondary(c))

C/C++

prototype

double _Complex __fxcpnmadd (double _Complex c,

double _Complex b, double a);

double _Complex __fxcsnmadd (double _Complex c, double

_Complex b, double a);

Fortran

description

FXCPNMADD(C,B,A) or FXCSNMADD(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross copy multiply-subtract: __fxcpmsub, __fxcsmsub

Purpose Both of these functions can be used to achieve the same result. The

difference of the primary element of c, subtracted from the product of a and

the primary element of b, is stored as the primary element of the return

value. The difference of the secondary element of c, subtracted from the

product of a and the secondary element of b, is stored as the secondary

element of the return value.

Formula primary(result) = a x primary(b) - primary(c)

secondary(result) = a x secondary(b) - secondary(c)

C/C++

prototype

double _Complex __fxcpmsub (double _Complex c, double

_Complex b, double a);

double _Complex __fxcsmsub (double _Complex c, double

_Complex b, double a);

46 Using the IBM XL Compilers for Blue Gene

Table 20. (continued)

Fortran

description

FXCPMSUB(C,B,A) or FXCSMSUB(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross copy negative multiply-subtract: __fxcpnmsub, __fxcsnmsub

Purpose Both of these functions can be used to achieve the same result. The

difference of the primary element of c, subtracted from the product of a and

the primary element of b, is negated and stored as the primary element of

the return value. The difference of the secondary element of c, subtracted

from the product of a and the secondary element of b, is negated stored as

the secondary element of the return value.

Formula primary(result) = -(a x primary(b) - primary(c))

secondary(result) = -(a x secondary(b) - secondary(c))

C/C++

prototype

double _Complex __fxcpnmsub (double _Complex c, double

_Complex b, double a);

double _Complex __fxcsnmsub (double _Complex c, double

_Complex b, double a);

Fortran

description

FXCPNMSUB(C,B,A) or FXCSNMSUB(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross copy sub-primary multiply-add: __fxcpnpma, __fxcsnpma

Purpose Both of these functions can be used to achieve the same result. The

difference of the primary element of c, subtracted from the product of a and

the primary element of b, is negated and stored as the primary element of

the return value. The sum of the product of a and the secondary element of

b, added to the secondary element of c, is stored as the secondary element

of the return value.

Formula primary(result) = -(a x primary(b) - primary(c))

secondary(result) = a x secondary(b) + secondary(c)

C/C++

prototype

double _Complex __fxcpnpma (double _Complex c, double

_Complex b, double a);

double _Complex __fxcsnpma (double _Complex c, double

_Complex b, double a);

Fortran

description

FXCPNPMA(C,B,A) or FXCSNPMA(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross copy sub-secondary multiply-add: __fxcpnsma, __fxcsnsma

Purpose Both of these functions can be used to achieve the same result. The sum of

the product of a and the primary element of b, added to the primary

element of c, is stored as the primary element of the return value. The

difference of the secondary element of c, subtracted from the product of a

and the secondary element of b, is negated and stored as the secondary

element of the return value.

Formula primary(result) = a x primary(b) + primary(c))

secondary(result) = -(a x secondary(b) - secondary(c))

Chapter 4. Using XL builtin floating-point functions for Blue Gene 47

Table 20. (continued)

C/C++

prototype

double _Complex ____fxcpnsma (double _Complex c, double

_Complex b, double a);

double _Complex __fxcsnsma (double _Complex c, double

_Complex b, double a);

Fortran

description

FXCPNSMA(C,B,A) or FXCSNSMA(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross mixed multiply-add: __fxcxma

Purpose The sum of the product of a and the secondary element of b, added to the

primary element of c, is stored as the primary element of the return value.

The sum of the product of a and the primary element of b, added to the

secondary element of c, is stored as the secondary element of the return

value.

Formula primary(result) = a x secondary(b) + primary(c)

secondary(result) = a x primary(b) +secondary(c)

C/C++

prototype

double _Complex __fxcxma (double _Complex c, double _Complex b,

double a);

Fortran

description

FXCXMA(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross mixed negative multiply-subtract: __fxcxnms

Purpose The difference of the primary element of c, subtracted from the product of a

and the secondary element of b, is negated and stored as the primary

element of the return value. The difference of the secondary element of c,

subtracted from the product of a and the primary element of b, is negated

and stored as the primary secondary of the return value.

Formula primary(result) = -(a × secondary(b) - primary(c))

secondary(result) = -(a × primary(b) - secondary(c))

C/C++

prototype

double _Complex __fxcxnms (double _Complex c, double _Complex b,

double a);

Fortran

description

FXCXNMS(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross mixed negative sub-primary multiply-add: __fxcxnpma

Purpose The difference of the primary element of c, subtracted from the product of

the secondary element of a and the secondary element of b, is negated and

stored as the primary element of the return value. The sum of the product

of a and the primary element of b, added to the secondary element of c, is

stored as the secondary element of the return value.

Formula primary(result) = -(secondary(a) × secondary(b) - primary(c))

secondary(result) = a × primary(b) + secondary(c)

48 Using the IBM XL Compilers for Blue Gene

Table 20. (continued)

C/C++

prototype

double _Complex __fxcxnpma (double _Complex c, double _Complex b,

double a);

Fortran

description

FXCXNPMA(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

 Function Cross mixed sub-secondary multiply-add: __fxcxnsma

Purpose The sum of the product of a and the secondary element of b, added to the

primary element of c, is stored as the primary element of the return value.

The difference of the secondary element of c, subtracted from the product

of a and the primary element of b, is stored as the secondary element of the

return value.

Formula primary(result) = a x secondary(b) + primary(c))

secondary(result) = -(a x primary(b) - secondary(c))

C/C++

prototype

double _Complex __fxcxnsma (double _Complex c, double _Complex b,

double a);

Fortran

description

FXCXNSMA(C,B,A)

where C is of type COMPLEX(8)

where B is of type COMPLEX(8)

where A is of type REAL(8)

result is of type COMPLEX(8)

Select functions

Table 21 lists and explains the select functions that are available.

 Table 21. Select functions

 Function Parallel select: __fpsel

Purpose The value of the primary element of a is compared to zero. If its value is

equal to or greater than zero, the primary element of c is stored in the

primary element of the return value. Otherwise, the primary element of b is

stored in the primary element of the return value. The value of the

secondary element of a is compared to zero. If its value is equal to or

greater than zero, the secondary element of c is stored in the secondary

element of the return value. Otherwise, the secondary element of b is stored

in the secondary element of the return value.

Formula primary(result) = if primary(a) ≥ 0 then primary(c); else primary(b)

secondary(result) = if secondary(a) ≥ 0 then primary(c); else secondary(b)

C/C++

prototype

double _Complex __fpsel (double _Complex a, double _Complex b, double

_Complex c);

Fortran

description

FPSEL(A,B,C)

where A is of type COMPLEX(8)

where B is of type COMPLEX(8)

where C is of type COMPLEX(8)

result is of type COMPLEX(8)

Chapter 4. Using XL builtin floating-point functions for Blue Gene 49

